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For the polynomials P,(x)=alO+allx+ ... +a"x' (of degree /) we consider the
problem of maximizing a weighted product of the absolute values of the highest

coefficients n1~ I la"II'! among all polynomials P" .... P" for which the weighted sum
of squares L7~ I P,P;(x) is bounded by 1 on the interval [-1, I]. By an applica
tion of a duality result the solutions (depending on the weights (1,;) 0) of these
problems are determined. The "optimal" polynomials are the orthonormal polyno
mials with respect to a probability measure minimizing a weighted product of
determinants of Hankel matrices (the solution of the dual problem). For a special
class of weights PI, ..., {f" the optimal polynomials can be represented in terms of
ultraspherical polynomials. Thus some new extremal properties are obtained for
these polynomials which generalize the well known fact that among all polynomials
P" of degree fI with IP,,(xll,:; I (on [-I. I]) the maximum of the highest
coefficient is obtained for the Chebyshev polynomial of the Iirst kind. The results
are illustrated in several examples. \ 1994 Academic Press. Inc.

1. INTRODUCTION

Consider the well known Chebyshev polynomials

Til (x) = cos(n arc cos x)

and

sin((n + 1) arc cos x)
Uf/(x)=--,----

sm(arc cos x)

(x E [ -1, 1]) of the first and second kind which are the orthogonal
polynomials (with leading coefficients 211

- 1 and 2f/) with respect to the
measures (1_X 2 )-1/2 dx and (l_x2 )1/2 dx, respectively (see, for example,
Szego [22, p, 60]). One of the most beatiful features of these polynomials
is that they are the solutions of many extremal problems involving polyno
mials (see, e.g., Rivlin [12, p. 92] or Natanson [9, p. 50]). In this paper we
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are interested in extremal problems involving the highest coefficients of
polynomials which satisfy a restriction in the sup-norm. More precisely, it
is well known (see, e.g., Karlin and Studden [7, p.310], [12, p.93], or
[9, p. 50]) that among all polynomials P n (x)=a l1o+anl x+ '" +a'1I1x"
satisfying maxn ,[_I.I]IPI1 (x)! ~ 1 the maximum of the highest coefficient
(i.e., the coefficient of XII) is obtained for the Chebyshev polynomial of the
first kind (here the double index for the coefficients all' of the polynomial
P I1 (x) is used to be consistent with later notation). Similarly, UI1 (x) maxi
mizes the absolute value of the highest coefficient among all polynomials
P I1 satisfying max,E[ 1,1] y/I-X2IPI1(x)! ~ 1.

It is the purpose of this paper to consider some generalizations of the
above extremal problems. To this end let IP 11 be the set of polynomials up
to degree nE N and let for 1=0, ..., n P,(x)=ato+a/lx+ ... +a"x' denote
an arbitrary element of IP ,. For n EN we define the set

where PI' ..., PI1 are nonnegative (given) weights with sum 1. For
P,(x)=ato+a/lx+ ... +a"x/EIP/ let m/(P,)=au denote the coefficient of
,,,,-;I in the polynomial PI' We are asking for the solution of the problem

(P)

(if P,=O we define Im/(P,W'= 1 for all PiE IP'/ and do not consider the
polynomials of degree 1 in the set 3~J In the same way we define

,1n := {(Qo, ..., QlI) E lP'o x ... x IP'I1I . max (1- x 2
) I P/Q7(.x) ~ I}

.'E[-LI] ,=()

(1.2 )

and we consider the extremal problem

(Q)

Extremal problems of the form (P) and (Q) appear in the geometric
solution of model robust design problems in linear regression models. Here
the coefficients of the polynomials PI' ..., P II in the set i¥" define a covering
halfspace to a convex subset of IR n

(1I + 11/2 and a function depending on these
coefficients has to be maximized over the set of all these covering halfspaces
(see Dette [3] for more details).
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Obviously, (P) and (Q) reduce to the classical extremal problems for
the Chebyshev polynomials of the first and second kind in the case
f3n = 1 and f3/= 0 if I ~ n - 1. While the solution of these "original"
problems is more or less elementary (see [9, p. 50]) it is more com
plicated to determine the maximizing "set" of polynomials for the
generalizations (P) and (Q). In Section 2 we wiIl identify dual problems
(P*) and (Q*) corresponding to (P) and (Q) as minimization problems
for determinants of Hankel matrices in the set of all probability measures
on the interval [- 1, I]. A strong duality theorem is proved and the
solution of the dual problems (P*) and (Q*) (i.e., the minimizing prob
ability measure ¢*) is determined in terms of canonical moments which
were used by Studden [19] for the solution of a generalized problem of
Chebyshev and by Lau and Studden [8] for the solution of Fejer's
problem. The maximizing polynomials in the problems (P) and (Q) are
then the orthonormal polynomials with respect to the probability
measure solving the corresponding dual problem. In Sections 3 and 4 we
consider "special" weight sequences (e.g., the uniform weights
f3, = .. , = f3" = lin) for which the solutions of the problems (P*) and
(Q*) become more transparent. For these sequences the maximizing
polynomials are proportional to weighted sums of ultraspherical polyno
mials and we can represent the solutions of (P) and (Q) in terms of
these classical polynomials. Some generalizations of the results are given
in Section 5. There we consider weights f3 b'''' /3" where most of the /3,
are vanishing. Especially we show that among all polynomials Pdx) and
P2k (x) of degree k and 2k satisfying ({f 1 E (0, I])

for all x E [ - I, 1]

the maximum value of the weighted product of the absolute values of the
highest coefficients !mk(pk)!l /i, !m2k(P2dl fl , is obtained for a linear and
quadratic polynomial in the kth Chebyshev polynomial of the first kind
Tk (x). Some of the more complicated proofs of the results are given in
Appendixes A and B.

2. THE DUAL PROBLEM AND ITS SOLUTION

Throughout this paper j;(x) = (1, x, , x')' E IR'+ I will denote the vector
of monomials up to the order I (l = 0, , n) and ¢ stands for a probability
measure on the interval [-I, I] (or on its Borel field) with moments
C,= f~l xid¢(x) (i~0). We introduce the well known "Hankel" matrices
(see, e.g., Karlin and Shapely [6, p. 56] or [7, p. 106])
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M2/(O =r f,(x) f;(x) d((x)
--I

249

(2.1 )

M 2/ + 2 (0 =r fl(.x) f,(x)( 1- X
2

) d~(x)
-I

[

Co - (2

('I-C, C2 -C4

= CI-:('1+2 CI+I~CI+3

C
I
-C

I
+

2
]

('/+I~C/+3

C2/- C2/+ 2

(2.2)

(P*)

(Q*)

(2.4 )

(2.3 )

and their corresponding determinants fJ 2/ «() = det( M 2/( ( )), J 2/ + 2 (~ ) =
det(M2/ + 2 (O). For nonnegative weights PI with sum I and P,,>O we
consider the minimization problems

inf{fI (fJ;_2(~))fill ~E~}'
I~ I _ 2/(0

inf {fI ( J2/(~) )fJI I~ E S}
1=0.1 2/ + 2 (0

(fJo = 30 = 1), where G (and E) denote the set of all probability measures
on the interval [-1,1] such that the matrices M2/(() (and M 21 + 2 (O) are
nonsingular (l = 0, ... , n). The essential step for the solution of the "primal"
problems (P) and (Q) is the following duality theorem whose proof is
complicated and therefore deferred to the Appendix.

THEOREM 2.1 (Duality). The prohlems (P*) and (Q*) are the dual
problems of (P) and (Q). More precisely, we have

max tDl Im l (P/)1 2/l1\(P I , ••• , PJJE.'~I}

=inf{fI (fJ;_2«(»)f
l
'j ~EG}'

1=1 _2/(0

max {fI Im/(Q/»)2fJ1 l(Qo, ..., Q,,) E En}
/~(J

=inf{n ( 32/(~). )(11

1 (ES}.
/ = 0 .1 2/ + 2 ( .; )
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Moreover, ij' (PI' ... , PII) E 21:, and 5* E ~ are solutions oj'the prohlems (P)
and (P*) H'e have

(2.5 )1= 1, ..., n42/(~*) 'M 1("*»)'()
A, 1-( "*) ('I - 21 § I X ,
_"I _ §

where ('I = (0, ... , 0, I)' E lR1+ I. Ij' (Qo, ... , QII) E l211 and [* E S are solutions oj'
the prohlems (Q) and (Q *) Ive have

J (""*)
21 + 2 i; . 'M 1 (Y*))' ( .)
A

21
( ( *) ( I 2/ + 2 c; I ..\ , 1=0, ..., n. (2.6)

The polynomials {PI(x)};'=o and {QI(X)};'~() are the orthonormal polyno
mials Ivith respect to the measures d5*(x) and (l-x2 )dt*(x), respectively.

In the following we will show that there always exists a unique solution
of the dual problems (P*) and (Q*). The "unique" (up to the sign) solu
tions of the primal problems (P) and (Q) can then be determined by
Theorem 2.1, (2.5) and (2.6). For this task we will need some basic facts of
the theory of canonical moments. We will give a brief introduction and
state some of the main results which are needed later. The interested reader
is referred to the work of Karlin and Shapely [6 J, Karlin and Studden
[7J, Skibinsky [15-17], Studden [18-2IJ, and Lau and Studden [8].

For a probability measure ( on [-I, I J with moments ('i = f 11 Xi d(x)
the canonical moments are defined as follows. For a given set of moments
('0' CI, ... , ('1-1 let c i+ denote the maximum of the ith moment J'-l Xi dlJ(X)
over the set of all probability measures ~7 having the given moments
('{), ('I' ... , ('i- I' Similarly let Ci denote the corresponding minimum. The
canonical moments are defined by

i= 1,2, ....

Note that °~ Pi ~ I and that the canonical moments are left undefined
whenever c;+ = c i-. If i is the first index for which this equality holds, then°< Pk < 1, k = 1, ..., i - 2, Pi 1 must have the value 0 or 1 and the design
~ is supported at a finite number of points. In this case ~ is the "lower" or
"upper principal representation" of its corresponding moment point
(c{), ... , C 1 _ d (see [17, Sect. I]). As an example consider the Jacobi measure
with density (l - IX)' (l + X)fl (IX> -I, f3 > -1). For this measure we have
(see [16J)

k
(2.7)
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The uniform measure (a. = /3 = 0) has P2k _ ] = 1/2 (k ~ 1) and
P2k = k/(2k + 1) and the arc-sine distribution has Pk = 1/2 for all k
(a.=/3= -~). The determinants 42/(0 and 3 2/ + 2(0 appearing in the dual
problems can easily be expressed in terms of the canonical moments of the
probability measure ~ (see [17] or [20]).

THEOREM 2.2. Let ~ denote a probability measure with canonical
moments PI,p2,···,q;=I-p; (j~l), (0=1, 1'0=1, C=PI' }'l=Q"
(;= qj-l Pj' Yj = Pj- lq; (j~ 2). Then we have

I

A ()')=2 /(1+1lTI(r. Y.)/+l-i_ 21 " ~ 2, - I <, 2, ,

i= 1

I

-:i (.)')-2 /(1+)) TI (" . " )/+I-i
LJ 21 " - 12; - 1 12i •

i= I

The minimization in (P*) and (Q*) can now be easily carried out in
terms of the canonical moments and we obtain the following result.

THEOREM 2.3. Let (Ji = '[.7=i /31 then we have the following:

(a) The solution ~* of the dual problem (P*) is unique and has
canonical moments

P2n = 1.

i= 1, ... , n

i= 1, ..., n-l (2.8 )

(b) The solution (* of the dual prohlem (Q*) is unique and has
canonical moments

(Ji
P2i=---

(Ji _) +(J/

P2n+ 2 = o.

i = 1, ..., n + 1

i= 1, ..., n (2.9)
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Proof We give a proof of (a); the second case is treated in the same
way. Minimizing

"(,1 (())!II "[ / ] /IIn -21 2. - = n 221 n ((21 _ I (2j)
I ~ I c;12' ( i;; ) ,~ I j ~ I

(here the last identity results from Theorem 2.2) in terms of the canonical
moments we obtain by straightforward algebra the moments in (2.8). The
fact that 5* is the unique design with canonical moments (2.8) results from
p 2/1 = I (see [I 7] ). I

Theorem 2.3 provides essentially a complete solution of the dual
problems (P*) and (Q*) and the (unique) solutions of the primal problems
(P) and (Q) can be obtained by Theorem 2.1. Instead of applying the
formulas (2.5) and (2.6) directly, it is convenient to use the orthonormality
property of the polynomials {P'(.\')};'~I and {Q,(x)}7~owith respect to the
minimizing measures and the following lemma (see [20]).

LEMMA 2.4. Let ~ denote a probability measure on the interval [ - I, I]
with canonical moments PI' P2, ... , (I = PI' II = q" C= q; I Pj' ,'j = P;- I qj
(j ~ 2, qi = I - Pi) and let the polynomials P, and 12, be defined recursively
by (P 1=12 1=0, Po=12o=l)

P;+ 1(x) = (x + I - 2((2j + (2;+ I)) PI(x)

(j~0)

(j~O).

The polynomials {P,(x) };'= I and {12,(x)};'=o are orthogonal with respect to
the measures d~(x) and (I - x 2

) d~(x), respectively. Moreover, the L 2-norms
o{ the polynomials with re.\pect to these measures are given hy

f' p2( ) d"( 22/0' Y • c;121(O
_ ,x i;; x) = . ~ 2i I ~ 2; = ,1? ? ( • )

1 J ~ 1 __, ... " i;;

f_
1. ,+ I J 21 + 2 ( 0

Q-,2(X)( 1- x 2) (fl'(x) = 22(/ + 1) 0 ','_?I· .,
" I i 2j = ,1? (c) .

j~ I -, .

3. SOLUTIONS OF THE DUAL PROBLEM WITH SIMPLE STRUCTURE

(2.10)

(2.11 )

For a general set of weights {PI} it seems to be difficult to identify the
underlying measure (i.e., the solution of the dual problem) corresponding
to an "optimal" set of canonical moments and to derive explicit expressions
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for the orthonormal polynomials with respect to these measures. In this
section we are considering a one-parameter class of weights which yields
explicit expressions for the solutions of the primal and dual problems
(P), (Q), (P*), and (Q*). To this end we define for z~O the weights

F(n) r( n + Z - 1)
P, (z) = Z F(n + z) r( n + 1-I)'

for the extremal problem (P) and

r(n + I) r(n + z -I)
P,(z)=z r(n+z+ I) r(n+ I-I)'

1= I, ..., n

1=0, ... , n

(3.1 )

(3.2)

for the problem (Q). Here r( z) denotes the gamma-function and the case
z =°is understood as the limit lim= ~ 0 (Po (z), ... , PlI (z)) = (0, ..., 0, 1). Using
the identity (nEN o, zEIR\{O, -I, -2, ... })

±r(n+z-I)=r(n+z-i+l)1
,~,r(n+l-I) r(n-i+l) z

(3.3)

(which follows by an induction argument) it can easily be shown that
L.,P,(z)= 1. Note that the class defined by (3.1) (and (3.2)) includes the
important case of uniform weights P,= lin (P,= I/(n + I)) which is
obtained for the case z = 1. By Theorem 2.3 we have that the solution s*
of the dual problem (P *) is characterized by the canonical moments
P2,- J = 1/2 (i = 1, ..., n), P211 = I, and

n-i+z

z+2(n-i)'
i= I, ... , n-I, (3.4 )

where the last identity follows again from (3.3) and straightforward
algebra. Similarly the canonical moments of the solution (* of (Q*) are
given by P2i- 1 = 112 (i = I, ... , n + I ), P2" + 2 = 0, and

(1, n-i+ 1
P2'= (1, J+(1, z+2(n-i+I)'

i= 1, ..., n. (3.5)

In these cases an explicit representation of the minimizing measures
in the dual problems is possible and was obtained by Dette [2]. In what
follows C~X)(x) denotes the nth ultraspherical polynomial orthogonal
with respect to the measure (1 - x 2

)" - li2 dx with leading coefficient
2"r(IX + n)lr(n + I)F(IX) (see [22, p.93]).
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THEOREM 3.1. (a) The solution 5* of' the dual problem (P*) for the
weights 13,(z) defined hy (3.1) is supported at the zeros of the polynomial
(1 - x 2) C~z!2t I )(x) and the masses at all interior support points are equal to
I/(n + z). The masses at the houndar,V points ± 1 are equal to (z + 1)/2 times
the masses at the interior points.

(b) The solution ~* of'the dual prohlem (Q*) for the weights {j,(z)
defined h,v (3.2) puts equal masses at the zeros 01' the polynomial C~:~21(x).

The simple form of the solutions of the dual problems suggests that it is
also possible to obtain explicit representations for the solutions of the
primal problems (P) and (Q) if the weights are defined by (3.1) and (3.2),
respectively. By Theorem 2.1 the maximizing polynomials are orthonormal
with respect to the measures dS*(x) and (I-x2)d~*(x). The following
result shows that these polynomials are weighted sums of uItraspherical
polynomials.

THEOREM 3.2. (a) The solution (PI' ..., P,,) of the primal prohlem (P)
for the weights defined in (3.1 ) is given hy

Lli2J
P,(x)=±a(n,l,z), I (-I)i{j(n,l,z,j)c: z/227" I+))(X),

i~O

1= I, ... , n.

(b) The solution (Qo, ..., Q,,) 0/ the primal prohlem (Q) for the weights
defined in (3.2) is given hy

LI/2J
QI(x)=±a(n+I,I+l,z), I (-1)1 1'(n,l,z,j)c:z2

27" '+i+II(X),

i=O

1=0, ... , n.

Here the numhers a(n, I, z), fJ(n, I, z, j), y(n, I, z, j) are defined by
a(n, 0, z) = fJ(n, 0, z, 0) = y(n, 0, z, 0) = 1 and

. [ z+2(n-/) J1
/
2

a(n, I,)) =
r(n) r(n + z) r(n -I+ z) r(n -I + 1)

.. . r(l- j) r(n -I + z + j) r(n - 1+ j)
f3(n, I, Z,))= [jZ+/(n-l+ ))] r(j+ 1)[z+2(n-l+ j)]

. r(l+ 1-j). .
}'(n,l,z,))= r(j+1) r(n-I+)+I)r(n-l+z+)).
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Proof We will give a detailed proof of part (b) and sketch the main
steps of the proof of (a) very briefly. For simplification of the notation we
introduce the continuants

-I -I]
hll

(all other elements in the matrix are 0) which have various applications in
the theory of continued fractions (see, e.g., Wall [23]). By Lemma 2.4 the
orthogonal polynomials with respect to the measure (l-x 2

) d(*(x) with
leading coefficient 1 are recursively given by H2o ex) = 1, QI (x) = x)

I?: 2, (3.6 )

where the canonical moments P2' are defined by (3.5) (note that the canoni
cal moments of odd order of (* are 1/2) and it can easily be checked that
the polynomials Q,(x) can also be written as the continuant (l?: 2)

Q/(X)=K(
x

n(n-l+z)

(z+2n)(z+2(n-l»

x

x

(n -I + 2)(n -I + z + 1) )
(z+2(n-l+ 1»)(z+2(n-I+2)) x .

To obtain an explicit representation of Q,(x) in terms of ultraspherical
polynomials we need the following lemma whose proof is deferred to
Appendix B.

LEMMA 3.3. Let k ?: 3, W + 2a > - 3. Then the polynomial

G~a \I(X) = K (

x

(k - 2 + a)(k - 1+ a + 11')

(w+2(k-2+a»)(w+2(k-1 +a»)

x

x

(a+l)(a+2+w) )
(w+2(a+l))(w+2(a+2)) x .
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(G~;""I(X)= 1, G\a.wl(x) = x) is given by

G (a. II I( x) =2 - (k - 1) T( (w + 2)/2 + a) T(k )
k I . T( n/2 + a + k)

Lik~I/2J . T(a+j) T(w+a+I+j)
x 1.... ( - 1)/ _-,-_::...c-_ --'------'--

F(a) T(j + 1) T( II' + a + 1)

T(k - .)
} C(II/2+I+a+ il ( )

x T(k) k 2} 1 X .

Using Lemma 2.4 and (3.5) it follows by straightforward calculations for
the L 2-norms of the orthogonal polynomials Q}(x) with respect to the
measure (I _x2

) dt*(x) that

I 1+ I

-2-f Q-2( I 2)di *(. - nbI - , x)( - x I, x ) - P2) - 2 q 2}

-I } ~ I

T(n + I) F(n + z + I) [T(z/2 + 1 + n _I)J2
= T(n+I-I)r(n-l+z)(z+2(n-l)) T(z/2+n+I)2 1

•

Thus we obtain from Lemma 3.3 (a=n-l+ I, k=l+ I, w=z-2) for the
orthonormal polynomials with respect to the measure (I - x 2

) dt*(x)

LI/2J

=~(n+I,I+I,z)· L (-I)i}'(n,l,z,j)C~:/22:" I+/+II(X)

i~ 0

(l = 0, ... , n) which completes the proof of part (b). For the proof of (a) we
remark that by Lemma 2.4 and (3.4) the orthogonal polynomials P,(.x)
with respect to the measure dS*(x) can be written as (Po (x) = I, PI (x) = x)

n-I+z

z + 2(n - I)

(n - I)(n - 2 + z)

(z + 2(n - I))(z + 2(n - 2))

x

x

(n-l+ I +z)(n-I+2) )

(z+2(n-l+l))(z+2(n-I+2)) x .

n-1+z= xG(n 1+ I.: 21(X) _ G(II ,+ I.: 2)(X),
. I-I . z+2(n-l) 12
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where in the last step we have used an expansion of the determinant and
the definition of the polynomials G~u,,,/(x). The L 2-norms of the polyno
mials P,(x) with respect to the measure d~*(x) are given by

fl p,(X)2 d~*(x) = T(n) r(n + z)
-I - T(n-/+z)T(n-/+l)(z+2(n-l))

x [T(Z/2 + I +n-I)]2
T(z/2 + n) 2' 1

and the assertion (a) of Theorem 3.2 now follows from Lemma 3.3 and
straightforward but tedious algebra. I

EXAMPLE 3.4. In the case z=O we have for the weights {I" (0) = 1,
P,(O) = 0 if / ~ n - 1 and we obtain the extremal problems for the
Cheybshev polynomials described in the Introduction. In this case the
canonical moments in (3.4) and (3.5) are all 1/2 and the corresponding
probability measure is the discrete arc-sine distribution. Taking the limit
z ->- 0 it can easily be shown that the polynomials P" (x) and Q" (x) of
Theorem 3.2 reduce to the Chebyshev polynomials T,,(x) and U,,(x),
respectively.

EXAMPLE 3.5. Taking z = 1 we obtain that all weights {3, in the extremal
problems (P) and (Q) are equal. If n = 3 the problem (P) is to maximize
the product of the absolute values of the highest coefficients IT;~ 1 jm,(P1)!
where the polynomials P, (of degree I) satisfy

for all x E [ - I, I].

By an application of Theorem 3.2( a) it is now straightforward to show that
this product is maximized for the polynomials

PI(X)=Ax, 5 ~( 13)P (x)=-J3 x3 _-x
3' 2 . 15'

and it follows from Theorem 2.1 and Theorem 3.1 (a) that these polyno
mials are the orthonormal polynomials with re~ect to the measure ~*

which puts equal masses at the points -I, -1/V5, 1/,,15, and 1 (the zeros
of (I - x 2) Ci3/2)(X)). This measure is the solution of the D-optimal design
problem for the cubic regression model (see [7, p. 339]). In the same way
we have by Theorem 3.2(b) that under the restriction

for all x E [ - I, I]
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the product nj~o !mt(Qt)! is maximized for the polynomials

7)5
Q,(x)=-6- x ,

Q3(X) = \0; (x3
- ~~ x).

4. AN EXTREMAL PROPERTY OF THE ULTRASPHERICAL POLYNOMIALS

In Section 3 we investigated weights PI which yield solutions of the dual
problems (P*) and (Q*) with a very simple structure. The solutions of the
primal problems are more complicated (see Theorems 3.1 and 3.2). In this
section we will aim for a simple structure of the solutions of the primal
problems (P) and (Q). We will investigate a class of weights which yield
the ultraspherical polynomials as extremal polynomials. To this end define.

{

2a _r_U_+_l_)_r_(2_a_+_I_)

~ a _ r(l + 2ex + 2)
t I( ) - r(n + I) T(2a + 1)

T(n + 2a + 1)

if °~ I~n-l
if 1= n,

(4.1 )

where a;?; 0. Then we have the following theorem.

THEOREM 4.1. Let a ;?; °and (J I (ex) he defined hy (4.1 ). Among all polyno
mials Qo(x), ... , QIl(X) (of degree 0, ..., n) sati.\:fying

for all x E [ -1, 1], the "weighted" product of the absolute values of the
highest coefficients 0;'=0 !ml(Q/)!lliI>l is maximized for the polynomials
(proportional to the ultraspherical polynomials) Qt(x)=B(2a+l,I+I)
Q>+I)(X).

Proof We consider the extremal problem (Q) for the weights P/(a)
defined by (4.1). By Theorem 2.3 the solution ~* of the dual problem (Q*)
has canonical moments P2i ,= 1/2 U= 1, ,'" n + I), P21l + 2 = 0, and

P2i=---
(Ii ,+(Ii 2(i+ex)'

i= I, ..., n,
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where the last identity follows by induction and from the representation
(Ji_ 1 = f3i-l (q2;/(q2i- P2;) (this is an immediate consequence of (2.9»).
From Theorem 2.1 we have that the maximizing polynomials are
orthogonal with respect to the measure (1 - x 2

) d(*(x). Because the
canonical moments of (* coincide with the first 2n + 1 canonical moments
of the Jacobi measure in (2.7) (a = f3 = a - 1/2) the polynomials Q/(.:t;) are
proportional to the ultraspherical polynomials C~>+ 1 )(x). Comparing the
leading coefficients of these polynomials we obtain

2 _ F(/ + 1) F( 2a + 1) (>+ 1) 2
(Q/(x» -2 rU+2+2a) (/+a+ I)(C/ (x)),

1= 0, ..., n - 1

and the assertion now follows by a simple transformation of the
normalizing condition in the extremal problem (Q). I

EXAMPLE 4.2. For (J. =° we obtain the extremal property of the
Chebyshev polynomials of the second kind described in the Introduction
(note that C~I)(X)= U,,(x)). To give a "non-trivial" example we consider
the case a = 1/2. Then it follows that among all polynomials satisfying

(l-x 2) [t~ (2/+3) Q;(x)+ [(n+2) Qn(X)]2}

~ 1 for all x E [ - 1, 1]

the weighted product of the absolute values of the highest coefficients

,,-In Im/(QI)!1/(/+I)(/+21·lm,,(Q,,)II/(II+l)
1=0

is maximized for the polynomials [(I + 1)(1 + 2)] -I q3/2 1(X) (I = 0, ..., n).

Note that Theorem 4.1 shows that the ultraspherical polynomials C~')(x)

satisfy an extremal property whenever a? I. In a similar way we can derive
an analogous result (using the primal problem (P)) for the case
- 1/2 < a ~ 0. Its proof is performed in the same way as the proof of
Theorem 4.1 and therefore omitted.

640/76/2-9
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THEOREM 4.3. Let -1/2 <!Y. ~ 0 and

{

F(l + 2a)

" "_ - 2" r(l + I) q2" + 1)
1',( ) - r(n + 2a)

r(n) F(2a + I)

if 1~/~n-1

if 1= n.

Among all polynomials PI (x), ... , P,,(x) of degree I, ..., n satisfving

,,-I/+ a
-4a· L -0 P7(x) + P~(x) ~ I

'~I 1-

for all x E [ - I, I], the "weighted" product of the absolute values of the
highest coefficients n7~ I !ml(P,)!{i/('1 is maximized for the polynomials
(proportional to the ultraspherica/ polynomials) P,(x) = (l/2a) C;')(x).

Remark 4.4. Note that the restrictions in Theorems 4.1 and 4.3 can
easily be transformed in such a way that the extremal polynomials are
exactly the ultraspherical polynomials. Thus these theorems give extremal
properties for the ultraspherical polynomials q')(x) provided that the
parameter !Y. is nonnegative (Theorem 4.1) or nonpositive (Theorem 4.3).
This results from the fact that the weights in the extremal problems (P) and
(Q) have to be nonnegative. For negative weights PI the duality in
Theorem 2.1 does not hold any longer and thus Theorem 4.2 and
Theorem 4.3 are not true if a < 0 or ex> 0, respectively. In these cases
counterexamples can easily be constructed.

5. GENERALIZATIONS

In this section we will consider weights fJ l' ... , fJ" in the extremal
problems (P) and (Q) where most of these weights fJ, are vanishing. More
precisely, for 11 = kr (k, r EN) we will consider weights of the form

{
'= R* >0fJ. . 1'1:::--

} :=0
if j = kl, I = I, ..., r

else
(5.1 )

for the primal problem (P) and weights of the form

fJi{:=M~O
. :=0

if j = k(l + 1) - 1, 1=0, ..., r

else
(5.2)
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for the primal problem (Q) eLj P
1
=Lt f3t* = 1). For example, if kEN and

r = 2 the problem (P) for the weights in (5.1) is to maximize the product
of the absolute values of the highest coefficients ImdPdl l

/
i !m 2k (P 2k W

of two polynomials Pk and P 2k of degree k and 2k subject to the
restriction

for all x E [ -1, 1] (5.3 )

((PI> P2' fJ3, fJ4) = (0, fJt, 0, M) =: (0,1 - fJ, 0, fJ))· The following theorem
shows that the solution of this problem is given by PI (Tk (x)) and
P 2 (Tk (x)) where PI and P 2 are the linear and quadratic polynomials
maximizing the corresponding product subject to the restriction

for all x E [ - 1, 1]

and Td x) is the k th Chebyshev polynomial of the first kind.

THEOREM 5.1. (a) The maximizing polynomials in the prohlem (P) for
the weights fJj defined hy (5.1) are given h.p {Pt(Tdx))};~1 where the
polynomials {Pt(x)}; ~ I are the solution of the primal prohlem (P) for the
weights fJt, ..., P: (n = r).

(b) The maximizing polynomials in the prohlem (Q)for the weights P
1

defined by (5.2) are given by {Uk dx) Qt(Tk(x))};~(} where the polyno
mials {Q,*(x)};~() are the solution of the primal prohlem (Q) for the weights
n, ..., fJ: (n = r).

Proof We will give a proof for (b); the other part is treated in the
same way. Because the case k = 1 is trivial we assume k ~ 2 throughout this
proof. By an application of Theorem 2.3 we obtain for the canonical
moments of the solution (% of the dual problem (Q*) for the weights fJj
defined by (5.2)

P2k(r + 1) = 0,

j= 1, ..., r

i";;2k(r+ 1)-1, i#2kj (5.4 )

where 01 :=akj=I.7:kj f3,=I.;=jf37- By Theorem 2.1 we have to calculate
the orthogonal polynomials Qk _ I (x), Q2k .. I (x), ... with respect to the
measure (1 - x 2

) d(;(x) (with leading coefficient 1) which are given by
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-1 -1 - P!I-2 - q!I-2 -1

Q"_'(X)~K( - -
4 4 2 2 4

x x x

-I -pt - qt -1 - 1 J- - -
4 2 2 4 4

x x

Interpreting Qkl-I (x) as the polynomial in the denominator of a continued
fraction we obtain by a contraction (such that the convergents of the trans
formed continued fractions attain successively the values of the (k - 1)st,
(2k -1 )st, ... convergents of the original one (see Perron [10, Band 11,
pp.II-12])

-a2qfl_ 4pf/- 6

aTk(x)

(
l)(k -1)1

= 2 Uk _1(X)

(
I)(k- 1)1

= 2 Uk _dx)·Q1_dTdx)).

Here we have used the notation a = (1/2)k I, the recursive definition (see
(3.6» of the polynomials {Qn;~o (Q<l'(x) = I, Qt(x) = x)

Q1+ I (x) = xQ!(x) - qfl+2P"!tQ1- 1 (x), l~ 1, (5.5 )

and have applied the representation for the Chebyshev polynomials of the
second kind

1

4
x

Observing (5.4), (5.5), (2.9), Theorem 2.3, and Lemma 2.4 we see that
the polynomials Q! are orthogonal with respect to the measure
(1- x 2

) d[t.(x) where [to is the solution of the dual problem (Q*) for the
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weights n, ...,fJ: (n = 1'). The assertion of the theorem now follows from
Theorem 2.1 by a calculation of the normalizing constants (using
Lemma 2.4) which transform the polynomials Qkl-) (x) and Q1 ) (x) into
the orthonormal polynomials with respect to the measures (1 - x 2

) d~;(x)
and (1 _x2) d~~.(x). I

COROLLARY 5.2. Let kEN and fJ E (0, 1].

(a) Among all polynomials Pdx) and P 2dx) (of degree k and 2k)
satisfying (5.3) the product of the highest coefficients jmdPdl l

- (i

Im 2dP2dl P is maximized for the polynomials

and
1 1

P2k (x)= ±-J/3[(I+ fJ )T;;(X)-I].

(b) Among all polynomials Qk~ dx) and Q2k )(x) (of degree k-l
and 2k - 1) satisfying

for all x E [ - 1, 1]

the product of the highest coefficients Imk 1 ( Qk I W- {i 1m 2k ~ I (Q 2k _ 1)IIi is
maximized for the polynomials

and

Proof We will give a proof of (a); part (b) is treated in the same way.
By Theorem 5.1 we have to solve the problem (P) for 11 = r = 2 and a linear
and quadratic polynomial. The canonical moments of the solution of the
dual problem are obtained from (2.8) as pt=P3=1/2, P4=1, and
P2 = 1/(1 + fJ) and the assertion now follows directly from Theorem 2.1,
Lemma 2.4, and Theorem 5.1. I

Remark 5.3. Note that Theorem 5.1 yields some interesting results
generalizing the theorems of Sections 3 and 4. To give an example we con
sider the problem (P) for the weights {3J defined by (5.1) where the weights
f31 in (5.1) are given by (3.1). In this case it follows from Theorem 5.1 that
the maximizing polynomials have the representation

Lt/2J

Pkl(x)=±Ct.(n,l,z)· L (-l)J{3(n,l,z,j)
j~ 0

. C(z/2+,,-I+J'(T (x»
1- 2; k" 1= 1, ..., 11,
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where the numbers 0:( . ) and P( .) are defined as in Theorem 3.2. A similar
result can also be obtained for the solution of the dual problem (P*) (see
Theorem 3.I(a)).

APPENDIX A: PROOF OF THEOREM 2.1

EXAMPLE. The proof of Theorem 2.1 involves general arguments of
convex analysis as given in Roberts and Varberg [13] or Rockafellar [14].
For a better understanding of the difficult and technical proof of the
duality we start proving Theorem 2.1 for the special case PI = ... =
P" _I = 0, {3" = 1 where the situation is more transparent. Observing that
,;h-2(()/£/2/(O=c;M 2I

I (()c/ we obtain for the dual problem (using
Cauchy's inequality)

. f 'M 1(.) . f (C;,d)2
In c" _ 2" c:; C" = III sup d' d
~ ~ d#O M 2,,(O

=[S~P(;'~~I dIM
2,,(Od] I

= L/,~! I s~p d 'M2,,(O dJ I

= sup II f'r )2 d·d#()SUP~1 ({ J,,(X) c:;(x)

(c~d)2
=sup ,2'

"#0 SUP\E [ 1.1] Idf,,(xl!

where the second line follows from the first one by standard arguments of
game theory (see, e.g., [13, p. 131]). This yields

infc;,M2~'(~lc,,=sup{(C;,dl21 sup Id'f,,(xW= I}
~ XE[-I,I]

and establishes the duality in Theorem 2.1 for the special case PI = ... =
{3" 1=0, {3" = 1. The representation (2.5) now follows by discussing the
case of equality in Cauchy's inequality in the first line.
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I
The general proof of Theorem 2.1 is in essence a generalization of a

duality result of Pukelsheim [11] and is discussed in the more general
situation of model robust designs in Dette [4]. For completeness and
according to a comment of a referee we give detailed proofs of the essential
steps for the situation considered in this paper. To treat both cases of
Theorem 2.1 in one proof we introduce the following notation. Let
go (x), ..., gn (x) denote n + 1 continuous linearly independent functions
defined on the interval [-1, 1], C/ ::= (0, ...,0, 1)' E IR'+ I and define for a
probability measure ~ on [ -1, I]

A,(~) =r.!t(x)f;(x) d~(x) E IR(I+ I)x(/+ II,
- 1

(A.I)

where f,(x) = (go (.x), ..., g ,(x))' denotes the vector containing the first 1+ 1
functions go, ..., gl' We are interested in the maximization problem

(R *)

where /30' ..., /3n are positive numbers with sum t and S is the set of all
probability measures defined on the interval [- 1, I ] such that
Ao(~), ..., An(~) are nonsingular. Note that for the choices

(A.2)

and

(A.3)

(A.I) gives the matrices ¥2'(~) and M2'+2(~) defined by (2.1) and (2.2),
respectively. From the identity c;A [1(0 c,= det(A , dO)/det(A,(O) it is
obvious that for (A.2) and (A.3) the problem (R *) is equivalent to the
problem (P*) and (Q*) (note that in the case (A.2) we define the product
over the indices 1= 1, ..., n and that we have written (R *) as a maximiza
tion problem). For simplification of the notation we define jl(A /) :=
(c;At-1ct)-1 =det(At)/det(A , _ d (AtE IR(I+ l)x(l+ 1) positive definite) and
j(ao, ..., an) := n7=0 of' for positive numbers 0 0 , ... , an' The function
appearing in the problem (R*) can then be written as j(Jo(Ao(O), ...,
jn(A n(¢)))·

LEMMA A.1. The function j(ao, ..., an) = n;'~o af' is superadditive and
concave on IR + x ... x IR + (here IR + denotes the set of positive real
numbers).
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Proof Obviously, concavity is an immediate consequence of
superadditivity. For the proof of this property we use the well known
inequality (see [13, p. 190])

n, nl

TI X~' ~ L (/.IX I
I~ I 1= I

m

\fXI~O, (/.I~O, L (/.1=1
1= I

(A.4)

and obtain for positive numbers ao, "', an, bo, ..., bn

n

j(ao + bo, ..., an + b,J = TI (a l +bY'
I~O

"
= TI a7' + TI b;I' = j(ao, ..., an) + j(ho, ..., hn)' I

1=0 i~O

In what follows let NND(k) and PD(k) denote the set of all nonnegative
and positive definite k x k matrices. Defining

we have the following result (note that the next and the following theorem
generalize the corresponding results in [11] where the special case n = 0
and a more general "information" function jo(') is considered).

THEOREM A.2. For every (E S and for every N = (No, ..., N n ) E A" we
have

n

j(jo(A o(()), ..., j,,(A n «()) ~ IT (c;Nlc i)-fir

i~O

(A.S)
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with equality if and only if
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1=0, ... ,11.

Proof The proof given in [11] for the special case n = °can be trans
ferred to the situation considered in this paper. For completeness the main
steps are given here (see also [4] for more details). From the proof of
Theorem 3 in [11] we obtain

with equality if and only if

A 1/2(;:) N 1/2 = A ,- 1/2(0 c,c;N;/
2

, "" C;A,-l(OC, '
[= 0, ... , 11.

(A.6 )

(A.7)

This implies for all N= (No, ..., NII)E.V and ~ES (integrating the restric
tion in the definition of the set .1" with respect to the measure d~(x))

l~ ±PI{ f;(x)NJ,C'()d~(x)
'=0 --I

II

= L P, tr(A;(O N,)
'=0

"
~ f1 (c;N,C,){I'-j(Jo(Ao(O), ..., JII(A,,(O)) (A.8)

'=0

and proves (A.5). Here we have used the inequalities (AA) and (A.6) in the
last two steps. Equality in (A.5) implies c;Nfcf=C;AI-1(OCf (this follows
from the equality in (A.4) and (A.8)) and a postmultiplication of (A.7) by
NJ'2CI yields Af-I(~) Cf= NICf ([=0, ..., 11). Thus we obtain from (A.7)

1=0, ..., n

which completes the proof of Theorem A.2. I
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sup{j( io(Ao(O), ..., in(An(~)))1 ~ E S}

= min {IT (c;N,c/) -/1'1 (No, ... , Nil) C/·}. (A.9)
,~o

Proof The proof follows essentially the steps of the proof (for the case
n = a and a more general function io ( . )) given in [11]. Let .II denote the
set of all "matrices"

(Ao(O, ...,An(O)EIRIXlx ... xlR(n+l)x1n+l)

defined by (A.l) (~E S) and define the functions

f(A)={:
if A=(A o, ... ,A n )E.4't
else (AE!R1X1X ... xIR1n+l)x(n+I))

{

log i(Jo(Ao), ..., in(A n))

g(A)= if A=(A o, ..·,A"J,A,EPD(I+l)
- CfJ

else (AEIR IxI x ... xlRln+l)xln+II).

It is straightforward to show that the mappings A,-'i,(A,)=(c;A;-IC,)-1
are concave (on PD(I + 1» and it follows from Lemma A.l that the func
tion g is concave on .If. Fenchel's Duality Theorem (see, e.g., [14, p. 327])
provides a general duality result for the difference of a concave function g
and a convex function f and the difference of the corresponding conjugate
functions (note that the function f is only used for the definition of the set
./f). Here we need a slight modification of this result using the "weighted"
inner product

n

<A, B) := L P, tr(A;B,)
'=0

(A =(A o, 00', All)' B=(Bo,00.,B,JEIR1X1X ... x!R(n+I)X(,,+I)) instead of
the common inner product. Thus we obtain from Fenchel's Duality
Theorem

sup {g(A)- f(A)} =min {.f*(B)- g*(B)},
A B

(A.lO)

wheref* and g* are the corresponding conjugate functions off and g (see
[13, p. 30] or [14]) defined by
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g*(B) = inftt P, tr(A;B,) - g(A) IA,E PD(l + I), 1=0, ... , n}

f*(B) = sup tt p, tr(A;B,) I(A o, ..., An) E JI{}.
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The functions f* and g* have the same value at B = (Bo, ... , Bn) and
HB + B'] and the minimization problem can be carried out over the set of
"vectors" whose components are symmetric matrices B, E IRY + I) x Ii + I I. For
such "vectors" B we have

n

= L p,inf{tr(A;B,)-logJ,(A,)IA,EPD(l+I)}
'=0

n

= 1 + L: P,log(c;B,c,),
,~o

where we have used the identity (l = 0, ... , m)

inf{ tr(A;B,) -log J,(A,) IA, E PD(l + I)} = I + log(c;B,c,)

in the last step, (which was proved by Pukelsheim in [II, p. 346]). For
every B = (Bo, ..., Bn ) -# 0 (with symmetric components B, E [R1i+ I I x (/+ I)

and g*(B»-et:;) we obtain from the definition of f* that f*(B) is
positive and that the function

"
h(rx) = f*(rxB) - g*(rxB) = rxf*(B) - I-log rx - L P,log(c;B,c,)

,~o

attains it unique minimum at rx = l/.f*(B). This minimum is given by

" n
log f*(B) - L f3,log(c;B,c,) = L log(c;N,c,) lit,

,~o ,~o

where N, = Btlf* (B) and the vector N = ( No, ..., N,,) E .t' by the definition
of f*. The assertion of Theorem A.3 now follows observing that the
minimization of the right side of (A.IO) can be carried out over the set A"
and that the left side corresponds to the left side in (A.9). I

Proof of Theorem 2.1. We are proving the assertion for the extremal
problem (P); the other case is treated in the same way. Thus we have
S=~, g,(x) = x', and A,(O=1~:12'(~) (l=O, ...,n). We assume that all
weights f3, are positive; the case of a vanishing weight P, is obtained
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considering the corresponding optimization problems without the lth
component. Observing that (c, = (0, ...,0, I)' E IR'+ I)

where a l = (ao, ... , ali)' E IR'+ 1 is a vector such that ala; is a full rank decom
position of c,c;N,clc; it can easily be shown that the set A' in (A.9) can
be replaced by

{ (a l a;, ... ,an a;,)la,EIR'+l, ±f3,(a;./;(X))2~1}.
,= I

Identifying the vector a,E (R' + I as the vector of the coefficients of a polyno
mial PiE IP', we see that this set coincides with the set £1'n defined in (1.1).
Thus the duality in (2.3) is a direct consequence of Theorem A.3 (note that
jl(A,(~))= (c;M 2,1(0 c,) 1= oh(O/fl2'- 2(0 and that c;a, = all = m,(P,)
where P,(x) = a;J,(x)). For the proof of the second part let ;* and
(PI' ... , P/I) denote the optimal solutions of (P*) and (P) (P,(x) = a;'/;(x) I.
Then we have equality in Theorem A.2 for ;* and N,= ala;. Thus the
second part of this theorem shows

M I(;:*)C_ + - 2'''' ,
a, - - (c; M2/ 1( ~ *)C I ) 1/2 '

and we obtain for the polynomials PI

I = I, ..., n

fl2l(~*) 'M 1(;::*)]'( )
L1 0 0 ( "*) c,_ 2' ~ , x ,- -, • 5

I = I, ..., n.

Using this representation it follows from

I
I I

P,c'\:) f;(x) d;*(x) = a; I ./~(x) f;(x) d;*(x) = aiM2'(;*)
-I - I

and

rI Pj(x) d;*(x) = t I (a;J,(x))2 d5*(X) = a;M2'(;*) a, = 1

that the polynomials {P,(x)}7~1 are orthonormal with respect to the
measure d;*(x). I
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APPENDIX B: PROOF OF LEMMA 3.3

We will show by induction that

P
k

()'-2k-1 T(wj2+a+k) G(a,w)(X)
1 X.- r«w+2)/2+a)T(k) k l'

Ll k - 1 )/2 J . T( a + j) T( Ii' + a + 1+ j)
j~O (-1)' -r-(a-)-r-u-"-·+-1-) T(w +a + 1)

T(k- .)
x J C(w/2+I+a+J)(x).

T(k) k-2/- 1

For k = 1 the identity (8.1) is obvious while the case k = 2 yields
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(8.1 )

which is evident from the definition of the ultraspherical polynomials (see
Abramowitz and Stegun [I, p.794]). For the induction step from k to
k + 1 it is convenient to distinguish the cases of odd or even k and we will
only consider the case of k = 2m even (the case k = 2m + 1 is treated in
exactly the same way). From the induction hypotheses we obtain for
P2m(X) (by an expansion of the determinant)

- 2
2m

T(w+2)j2+a+2m) l ( 'jP x = xG (J,n X
2m (.) T( (w + 2)/2 + a) r( 2m + I) . 2m I (. )

(2m-l+a)(2m+a+w) (.) ]- . G ~n (X)
(4m - 2 + 2a + w)(4m + 2a + IV) 2m 2'

m - 1 . T( a + j) r( w + a + j + 1)
= I (-1)/---------

i = 0 r( a) r(j + I ) r( IV + a + 1)

T(2m - i-I) r « + 2) '0 + +. )x . (2m - J' - I )(IV + 2a + 4m) xC w ,- . a ) (x)
T(2m + 1) 1 2m 1 -- 21

- (2m - 1+ a)(2m + a + w) C«W+ 21/2 +a+iI(X) 1,. 2m- 2 - 2.1 r . J.

Now let P1,,)(x) denote the above sum where the summation in the last
expression is only performed over the indices 0, 1, ..., f (fE {O, t, ..., m - t },
i.e., P~: - 1 '(x) = P2m (X» and similarly define F~~;(x) as the "truncated"
sum of the polynomial defined on the right side of Eq. (8.1), that is,
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F\~!(x)= ±(-1)/ r(a+j) r(w+a+j+l)
• i ~ () r(a) r(j + 1) r( 11' + a + 1)

r(2m + 1- j) ellU' + 2)/2 + a +Jl( )
X r(2m + 1) 2m - 2i X

(fE {O, ..., m}). Then we have the following lemma whose proof is given in
a paper of Dette [5].

LEMMA 8.1. The polynomials F~;,; (x) and Pi;'!(x) .l'ati.~fy the equation
(f= 0, ... , m - I )

PUi(X)_pUi(X)=(_I)I+l r(a+f+l) r(w+a+2+f)
2m 2m r(a) r(f + 1) r( w + a + 1)

X r(2m - 1- f) . C((H+ 2\/2 +1+al(X).
r(2m + 1) 2m - 21 -- 2

U sing Lemma 8.1 we obtain now for the differences of the polynomials
appearing in (B. I)

- x _ 2m r(wj2+a+2m+ I) (a.U'1

P2m(.) 2 r((w+2)j2+a)r(2m+ I) G 2m (x)

=plm--JI(x)_F(m Il(x)_(_I)m r(a+m)
2m 2m r(a) r(m + 1)

r(w+a+m+l) r(m+l)
X =0

r( IV + a + 1) r(2m + 1)

which establishes (8.l) (in the case of even k = 2m). Because the odd case
is proved in the same way the assertion of Lemma 3.3 follows.
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